skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Collins, M_L_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the discovery and spectroscopic confirmation of an ultra-faint Milky Way satellite in the constellation of Leo. This system was discovered as a spatial overdensity of resolved stars observed with Dark Energy Camera (DECam) data from an early version of the third data release of the DECam Local Volume Exploration (or DELVE) survey. The low luminosity ( M V = 3.5 6 0.37 + 0.47 ; L V = 230 0 700 + 1200 L ), large size ( R 1 / 2 = 9 0 30 + 30 pc), and large heliocentric distance ( D = 11 1 6 + 9 kpc) are all consistent with the population of ultra-faint dwarf galaxies (UFDs). Using Keck/DEIMOS observations of the system, we were able to spectroscopically confirm nine member stars, while measuring a tentative mass-to-light ratio of 70 0 500 + 1400 M / L and a nonzero metallicity dispersion of σ [ Fe / H ] = 0.1 9 0.11 + 0.14 , further confirming Leo VI’s identity as a UFD. While the system has a highly elliptical shape, ϵ = 0.5 4 0.29 + 0.19 , we do not find any conclusive evidence that it is tidally disrupting. Moreover, despite the apparent on-sky proximity of Leo VI to members of the proposed Crater-Leo infall group, its smaller heliocentric distance and inconsistent position in energy–angular momentum space make it unlikely that Leo VI is part of the proposed infall group. 
    more » « less